I've had issues in the past about the concentrations being wrong in some of the hlists. I suspect that the ones on sherlock are wrong relative to the ones on SLAC, and I want to confirm here.
I'm gonna load up the xi_gg saved with the MCMC I ran. I'll then load up the box and HOD of the same params and compute it and see if they align.
In [1]:
import matplotlib
from matplotlib import pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set()
In [2]:
import numpy as np
import h5py
from glob import glob
from ast import literal_eval
from os import path
In [15]:
from pearce.mocks import cat_dict
In [24]:
f = h5py.File('/u/ki/swmclau2/des/SherlockPearceMCMC/HOD_xi_gg_rmin_None_HOD_v5.hdf5', 'r')
In [12]:
xi_sherlock = f['data'][()]
In [13]:
sim_config = eval(f.attrs['sim'])
In [14]:
sim_config
Out[14]:
In [26]:
f.close()
In [18]:
sim_hps = sim_config['sim_hps']
sim_hps['system'] = 'ki-ls'
In [75]:
sim_hps
Out[75]:
In [19]:
cat = cat_dict[sim_config['simname']](scale_factor = sim_config['scale_factor'], **sim_hps)
In [20]:
cat.load(sim_config['scale_factor'], HOD = sim_config['hod_name'])
In [23]:
cat.populate(sim_config['hod_params'])
In [51]:
r_bins = np.logspace(-1.1, 1.6, 19)
r_points = (r_bins[1:] + r_bins[:-1])/2.0
In [69]:
xis = np.zeros((10, 18))
for i in xrange(10):
print i,
cat.populate()
xis[i] = cat.calc_xi(rbins = r_bins)
xi_slac = xis.mean(axis = 0).squeeze()
In [70]:
plt.plot(r_points, xi_slac, label = 'SLAC')
plt.plot(r_points, xi_sherlock, label = 'Sherlock')
plt.legend(loc='best')
plt.loglog()
plt.show();
In [71]:
plt.plot(r_points, xi_sherlock/xi_slac, label = 'Sherlock')
plt.legend(loc='best')
plt.xscale('log')
plt.show();
In [74]:
cat.halocat.halo_table['halo_nfw_conc']
Out[74]:
In [ ]: